Formulation, physicochemical characterization and in vitro evaluation of human insulin-loaded microspheres as potential oral carrier
نویسندگان
چکیده
The objective of the present investigation was to formulate and characterize the human insulin entrapped Eudragit S100 microspheres containing protease inhibitors and to develop an optimized formulation with desirable features. A w/o/w multiple emulsion solvent evaporation technique was employed to produce microspheres of human insulin using Eudragit S-100 as coating material and polyvinyl alcohol as a stabilizer. The resultant microspheres were evaluated for drug-excipient compatibility, encapsulation efficiency, particle size, surface morphology, micromeritic properties, enteric nature, and in vitro drug release studies. Micromeritic properties indicated good flow properties and compressibility. In present investigation formulation F6 with drug/polymer ratio (1:100) was found to be optimal in terms of evaluated parameters where it showed a significantly higher percentage of encapsulation efficiency (76.84%) with minimal drug release (3.25%) in an acidic environment. The optimized formulation (F6) also possessed good spherical shape and particle size (57.42 µm) required to achieve the desired in vitro drug release profile at pH 7.4. The results confirmed that human insulin-loaded Eudragit S-100 microspheres containing protease inhibitor possessed good encapsulation efficiency, pH dependant controlled release carrying encapsulated insulin to its optimum site of absorption. This ultimately resulted in enhanced insulin absorption and biological response.
منابع مشابه
Formulation and Evaluation of Propranolol Hydrochloride-Loaded Carbopol-934P/Ethyl Cellulose Mucoadhesive Microspheres
The purpose of this research was to formulate and systemically evaluate in-vitro and in-vivo performances of mucoadhesive propranolol hydrochloride microspheres for its potential use in the treatment of hypertension, myocardial infraction and cardiac arrhythmias. Propranolol hydrochloride mucoadhesive microspheres, containing carbopol-934P as mucoadhesive polymer and ethyl cellulose as carrier ...
متن کاملFormulation and Evaluation of Propranolol Hydrochloride-Loaded Carbopol-934P/Ethyl Cellulose Mucoadhesive Microspheres
The purpose of this research was to formulate and systemically evaluate in-vitro and in-vivo performances of mucoadhesive propranolol hydrochloride microspheres for its potential use in the treatment of hypertension, myocardial infraction and cardiac arrhythmias. Propranolol hydrochloride mucoadhesive microspheres, containing carbopol-934P as mucoadhesive polymer and ethyl cellulose as carrier ...
متن کاملPreparation, Characterization and Evaluation of Drug Release Properties of Simvastatin-loaded PLGA Microspheres
Microspheres formulated from poly (D,L-lactic-co-glycolide) (PLGA), a biodegradable polymer, have been extensively evaluated as a drug delivery system. In this study, the preparation, characterization and drug release properties of the PLGA microspheres were evaluated. Simvastatin (SIM)-loaded PLGA microspheres were prepared by oil-in-water emulsion/solvent evaporation method. The microspheres ...
متن کاملPreparation and in-vitro characterization of alginate microspheres incorporating leptospiral antigens as a delivery system and adjuvant
Leptospirosis is one of the most prevalent zoonotic diseases worldwide. Currently, multivalent whole-cell leptospiral vaccines can induce protection against leptospirosis. Therefore, preparation and formulation of new generations of vaccines that can stimulate long-term immunity for leptospirosis control are essential. The aim of this study was to prepare and characterize alginate microspheres ...
متن کاملPreparation and Characterization of Salbutamol Sulphate Loaded Ethyl Cellulose Microspheres using Water-in-Oil-Oil Emulsion Technique
The aim of this study was to formulate and evaluate microencapsulated controlled release preparations of a highly water/soluble drug, salbutamol sulphate by (water in oil) in oil emulsion technique using ethyl cellulose as the retardant material. Various processing and formulation parameters such as drug/polymer ratio, stirring speed, volume of processing medium were optimized to maximize the e...
متن کامل